Extensions 1→N→G→Q→1 with N=C22×C4 and Q=D5

Direct product G=N×Q with N=C22×C4 and Q=D5
dρLabelID
D5×C22×C480D5xC2^2xC4160,214

Semidirect products G=N:Q with N=C22×C4 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C22×C4)⋊1D5 = C2×D10⋊C4φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4):1D5160,148
(C22×C4)⋊2D5 = C4×C5⋊D4φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4):2D5160,149
(C22×C4)⋊3D5 = C23.23D10φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4):3D5160,150
(C22×C4)⋊4D5 = C207D4φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4):4D5160,151
(C22×C4)⋊5D5 = C22×D20φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4):5D5160,215
(C22×C4)⋊6D5 = C2×C4○D20φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4):6D5160,216

Non-split extensions G=N.Q with N=C22×C4 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C22×C4).1D5 = C20.55D4φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4).1D5160,37
(C22×C4).2D5 = C10.10C42φ: D5/C5C2 ⊆ Aut C22×C4160(C2^2xC4).2D5160,38
(C22×C4).3D5 = C2×C10.D4φ: D5/C5C2 ⊆ Aut C22×C4160(C2^2xC4).3D5160,144
(C22×C4).4D5 = C2×C4.Dic5φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4).4D5160,142
(C22×C4).5D5 = C20.48D4φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4).5D5160,145
(C22×C4).6D5 = C2×C4⋊Dic5φ: D5/C5C2 ⊆ Aut C22×C4160(C2^2xC4).6D5160,146
(C22×C4).7D5 = C23.21D10φ: D5/C5C2 ⊆ Aut C22×C480(C2^2xC4).7D5160,147
(C22×C4).8D5 = C22×Dic10φ: D5/C5C2 ⊆ Aut C22×C4160(C2^2xC4).8D5160,213
(C22×C4).9D5 = C22×C52C8central extension (φ=1)160(C2^2xC4).9D5160,141
(C22×C4).10D5 = C2×C4×Dic5central extension (φ=1)160(C2^2xC4).10D5160,143

׿
×
𝔽